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2 SEARCH ALGORITHMS

2.1 Problem-solving agents

2.2 Basic search algorithms
e Best-first search
e Blind search

2.3 Heuristic search
e Greedy search
e A* search
e Recursive best-first search
e Beam search?
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Problem-solving agents

Problem-solving agents: finding sequences of actions that lead to
desirable states (goal-based)

State: some description of the current world states
— abstracted for problem solving as state space

Goal: a set of world states
Action: transition between world states

Search: the algorithm takes a problem as input and returns a solution
in the form of an action sequence

The agent can execute the actions in the solution <= symbolism

How to solve problems??
The algorithm described in natural language = Pseudocode
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Problem-solving agents

def SIMPLE-PROBLEM-SOLVING-AGENT( problem)
s, an action sequence, initially empty
state, some description of the current world state
g, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE(state, problem)
if s is empty then
g4 FORMULATE-GOAL(state)
problem <— FORMULATE-PROBLEM(state, g)
$<— SEARCH( problem)
if s=failure then return a null action
action < FIRST(s, state)
s< REST(s, state)
return an action

Note: offline vs. online problem solving
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Example: Romania

On holiday in Romania, currently in Arad
Flight leaves tomorrow from Bucharest

Formulate goal
be in Bucharest

Formulate problem
states: various cities
actions: drive between cities

Find solution
the sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania
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Problem types

Deterministic, fully observable = single-state problem
The agent knows exactly which state it will be in; the solution
IS a sequence

Non-observable = conformant problem
The agent may have no idea where it is; the solution (if any)
IS a sequence

Nondeterministic and/or partially observable => contingency prob-
lem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space = exploration problem ( “online”)
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Example: vacuum world

Single-state, start in #5. Solution??
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Example: vacuum world

Single-state, start in #5. Solution??
|Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}
eg., [Right goes to {2,406, 8}
Solution??
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Example: vacuum world

Single-state, start in #5. Solution??
|Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,468}
Solution??

|Right, Suck, Le ft, Suck]

Contingency, start in #5

Murphy's Law: Swuck can dirty a clean
carpet

Local sensing: dirt, location only
Solution??
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Example: vacuum world

Single-state, start in #5. Solution??
|Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,468}
Solution??

|Right, Suck, Le ft, Suck]

Contingency, start in #5

Murphy's Law: Swuck can dirty a clean
carpet

Local sensing: dirt, location only.
Solution??

\Right,if dirt then Suck]
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Problem formulation

A problem is defined formally by five components

e initial state that the agent starts
— any state s € S (set of states), the initial state S5; € S
e.g., In(Arad) (“at Arad")

e actions: given a state s, ACTION(S) returns the set of actions
that can be executed in s

e.g., from the state /n(Arad), the applicable actions are
{Go(Sibiu), Go(Timisoara), Go(Zerind)}

e transition model: a function RESULT(s, a) (or DO(a, s)) that
returns the state that results from doing action « in the state s;
— also use the term successor to refer to any state reachable from

a given state by a single action
e.g., RESULT(In(Arad), Go(Zerind)) = In(Zerind)
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Problem formulation

e goal test, can be
explicit, e.g., © = In(Bucharest)
implicit, e.g., NoDirt(x)

e cost (action or path): a function that assigns a numeric cost to
each path (of actions)
e.g., the sum of distances, number of actions executed, etc.
c(s,a,s’) is the step cost, assumed to be > (

A solution is a sequence of actions
- {alaaﬂa o 7an}
leading from the initial state to a goal state
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Example: vacuum world state space graph
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states??
actions??
goal??
cost??
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Example: vacuum world state space graph

(20e | e [28)
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states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??

goal??

cost??
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Example: vacuum world state space graph

(20e | e [28)

(L T (#1140
LCAQ f AQQR
& &

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal??

cost??
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Example: vacuum world state space graph

(20e | e [28)

(L T (#1140
LCAQ f AQQR
& &

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal??: no dirt

cost??
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Example: vacuum world state space graph

(20e | e [28)

(L T (#1140
LCAQ f AQQR
R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal??: no dirt

cost??: 1 per action (0 for NoOp)

AT Slides 10e(©Lin Zuoquan@PKU 1998-2025 2 18



Example: the 8-puzzle

5 4

6 1

7 3
Start State

states??
actions??
goal??
cost??
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Example: the 8-puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??

goal??

cost??
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Example: the 8-puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal??

cost??
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Example: the 8-puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal??: = goal state (given)

cost??
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Example: the 8-puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal??: = goal state (given)

cost??: 1 per move

Note: optimal solution of 1n-Puzzle family is NP-hard
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Example: robotic assembly”

P

- . - R/\“R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal??: complete assembly with no robot included

cost??: time to execute
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Basic search algorithms

Simulated (offline) exploration of state space of a tree (TREE-SEARCH)

by generating successors of already-explored states

def TREE-SEARCH( problem)
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier by certain strategy
if the node contains a goal state then return the corresponding solui
expand the node and add the resulting nodes to the search tree

Frontier: all the leaf nodes available for expansion at moment, which
separates two regions of the state-space graph (tree)

— an interior region where every state has been expanded

— an exterior region of states that have not yet been reached
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Example: tree search
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Example: tree search
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Example: tree search

Note: loopy path (repeated state) in the leftmost

To avoid exploring redundant paths by using a data structure
reached set
— remembering every expanded node
— newly generated nodes in the reached set can be discarded
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

PARENT

5 || 4 Node ACTION = Right

PATH-COST =6

STATE

Dot notation (.) for data structures and methods (more self-explained)
— n.STATE: state (in the state space) corresponds to the node
— n.PARENT: node (in the search tree that generated this node)
— n.ACTION: action applied to the parent to generate the node
- n.COST: cost, g(x), of path from initial state to n
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Implementation: states vs. nodes

Queue: a data structure to store the frontier, with the operations

o [S-EMPTY(frontier) returns true only if there are no nodes in
the frontier

e PopP(frontier) removes the top node from the frontier and
returns it

e TOP(frontier) returns (but does not remove) the top node of
the frontier

e ADD(node, frontier) inserts node into its proper place in the
queue
More self-explained

Priority queue first pops the node with the minimum cost

FIFO (first-in-first-out) queue first pops the node that was added to
the queue first

LIFO (last-in-first-out) queue (a.k.a stack) pops first the most re-
cently added node
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Best-first search

Search strategy: refinement (pseudocode) for the frontier: choos-
ing a node n with minimum value of some evaluation function f/n)

def BEST-FIRST-SEARCH( problem, f)
note <— NOTES(problem.INITIAL)
frontier < a queue ordered by f, with note as an element //not defined yet
reached <— a lookup table, with one entry with key problem.INITIAL and vafue note

while not Is-EmpTY(frontier) do
note <— PoP(frontier)
if problem.Is-GOAL(node.STATE) then return node
for each child in EXPAND(problem,node) do
$<— child.STATE
if sis not in reached or child. PATH-CoOST<reached|s].PATH-COST the
reached[s| < child
add child to frontier
return failure
def EXPAND(problem,node) yield nodes

n
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Best-first search

def EXPAND(problem,node) yield nodes
$4— node.STATE
for each action in problem.ACTION(s)
s’ <= problem.RESULT(s,action) do
cost <— node. PATH-COST+problem. ACTION-COST(s, action,s’)
yield NOTE(STATE=s",PARENT=no0de, ACTION=action, PATH-COST=cost)

Note: EXPAND will be used in later
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Search strategies

A strategy is defined by picking the order of node expansion
e Uninformed (blind) search strategies
e Informed (heuristic) search strategies

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b — maximum branching factor of the search tree
d — depth of the least-cost solution
m — maximum depth of the state space (maybe co)

AT Slides 10e©Lin Zuoquan@QPKU 1998-2025 2

33



Blind search

Blind (Uninformed) strategies use only the information available
in the problem definition

e Breadth-first search
e Uniform-cost search
e Depth-first search

e Depth-limited search

e lterative deepening search
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Breadth-first search

BFS: Expand shallowest unexpanded node

Implementation
frontier = FIFO
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Breadth-first search

Expand the shallowest unexpanded node

Implementation

(4,
>(8) G

Al Slides 10e(©Lin Zuoquan@PKU 1998-2025

36



Breadth-first search

Expand the shallowest unexpanded node

Implementation
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Breadth-first search

Expand the shallowest unexpanded node

Implementation

>O ® ©® C



Breadth-first search

def BREADTH-FIRST-SEARCH( problem)

node <— NODE(problem.INITIAL)
if problem.Is-GOAL(node.STATE) then return node // solution
frontier<+— a FIFO queue with node as an element
reached <— { problem.INITIAL}
while not Is-EmpTY(frontier) do
node < PoP(frontier)
for each child in EXPAND(problem,node) do
§<— child.STATE
if problem.Is-GoOAL(s) then return child // solution
if s is not in reached then
add s to reached
add child to frontier
return failure
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Properties of breadth-first search

Complete??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 140+ +b>+... + b1+ (b — 1) = O(b*)
l.e., exp. in d

Space??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 140+ +b>+... + b1+ (b — 1) = O(b*)
l.e., exp. in d

Space?? O(b"!) (keeps every node in memory)

Optimal??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 140+ +b>+... + b1+ (b — 1) = O(b*)
l.e., exp. in d

Space?? O(b"!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
(the shallowest goal node is not necessarily optimal)
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 140+ +b>+... + b1+ (b — 1) = O(b*)
l.e., exp. in d

Space?? O(b"!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

O(b%): d = 16, b = 10, 1 million nodes/second, 1K bytes/node
Time — 350 years
Space — 10 exabytes (1IEB=10"GB)
— Space is the big problem; can easily generate nodes at
100MB /sec, so 24hrs = 3640GB

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 2 45



Python: search classes*

nmnn

Search

Create classes of problems and problem instances, and solve them with calls to the wvarious search functions.

nnn

import sys
from collections import deque
from utils import *

class Problem:
def __init__(self, initial, goal=Nomne):
self.initial = initial
self.goal = goal
def actions(self, state):
raise NotCodedError
def result(self, state, action):
raise NotCodedError
def is_goal(self, state):
if isinstance(self.goal, list):
return is_in(state, self.goal)
else:
return state == self.goal
def path_cost(self, c, statel, action, state2):
return c + 1
def value(self, state):
raise NotCodedError
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Python: search classes*

class Node:
"""4 node in a search tree.”"""
def __init__(self, state, parent=None, action=None, path_cost=0):
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.depth = 0O
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node {}>".format(self.state)
def __1t__(self, node):
return self.state < node.state
def expand(self, problem):
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
next_state = problem.result(self.state, action)
next_node = Node(next_state, self, action, problem.path_cost(self.path_cost, self.state, action, next_state))
return next_node
def solution(self):
return [node.action for node in self.path()[1:]]
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Python: search classes*

# class Node continued
def path(self):
node, path_back = self, []
while node:
path_back. append(node)
node = node.parent
return list(reversed(path_back))
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
return hash(self.state)
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Python: breadth-first search*

BFS
Implemente the pseudocode by calling function.
nimnn

def breadth_first_search(problem) :

frontier = deque([Node(problem.initial)]) # FIFO queue
while frontier:
node = frontier.popleft()
if problem.is_goal(node.state):
return node

frontier.extend(node.expand(problem))
return None

Note: It is helpful to use an Al code tool (say ChatGPT /DeepSeek /Github
Copilot) to translate the pseudocodes to Python codes
— Refer to Natural Language Understanding for understanding
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ChatGPT: breadth-first search*

def breadth_first_search(problem):
node = Node(problem.Initial)

if problem.Is_Goal(node.State):
return node # Solution found

frontier = Queue() # FIFO queue with node as an element
frontier.put(node)

reached = set([problem.Initiall)

while not frontier.empty():
node = frontier.get()

for child in problem.Expand(node) :
s = child.State

if problem.Is_Goal(s):
return child # Solution found

if s not in reached:
reached.add(s)
frontier.put(child)

return "failure"
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ChatGPT: breadth-first search*

ChatGPT notes: You will need to define the Node class and its at-
tributes based on your problem’s requirements

e problem.Initial: This refers to the initial state of your problem.
Replace it with the appropriate call to retrieve the initial state

e problem.Is Goal(state): This is a function that checks if a given
state is the goal state of your problem. Replace it with the imple-
mentation specific to your problem

e problem.Expand(node): This function generates the child nodes
of a given node in your problem. Modify it according to your prob-
lem’s requirements

Please ensure that you have the appropriate imports, such as
Queue from the queue module, and that you define the necessary
classes and functions for your specific problem before running this
code
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Uniform-cost search

UCS (aka Dijkstra's algorithm): Expand the least-cost unexpanded
node

Implementation
frontier = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution, O(bm*/d)
where (' is the cost of the optimal solution

Space?? # of nodes with ¢ < cost of optimal solution, O(bm*/ﬂ)

Optimal?? Yes—nodes expanded in increasing order of g(n)
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Uniform-cost search

O(bIC /)
— can be much greater than O())
(explore large trees involving large perhaps useful steps)
— all step costs are equal, O(b'“ /<) is just O(b"*)

UCS is similar to BFS
— except that BFS stops as soon as it generates a goal
whereas UCS examines all the nodes at the goal's depth
to see if one has a lower cost
strictly more work by expanding nodes at depth d unnecessarily
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Depth-first search

DFS: Expand deepest unexpanded node

Implementation
frontier = LIFO

20)
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Depth-first search

Expand the deepest unexpanded node

Implementation

(4)
>(8) O

/ N\ / N\
®» B @D
AN A AN A
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Depth-first search

Expand the deepest unexpanded node

Implementation
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Depth-first search

Expand the deepest unexpanded node

Implementation
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Depth-first search

Expand the deepest unexpanded node

Implementation

Back-propagation (backtracking)
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Properties of depth-first search

Complete??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?7?
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space

Optimal??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-
first

Space?? O(bm), i.e., linear space

Optimal?? No
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Depth-limited search

DLS= depth-first search /w depth limit [; cutoff no solution within [

Recursive implementation (recursion vs. iteration)

def DEPTH-LIMITED-SEARCH( problem, )
return RECURSIVE-DLS(NODE(problem. INITIAL), problem, [)

def RECURSIVE-DLS(node, problem, 1)
frontier < a stack with NODE(problem.INITIAL) as an element
result < failure
if problem.Is-GOAL(node.STATE) then return node
if DEPTH(node)>[ then
result < cutoff
else if not Is-CyCLE(node) do
for each child in EXPAND(problem,node) do
result <— RECURSIVE-DLS( child, problem, )
return result
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Iterative deepening search

IDS repeatedly applies DLS with increasing limits

def ITERATIVE-DEEPENING-SEARCH( problem)

for depth=0 to oo do
result <— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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Iterative deepening search /=0

Limit = 0 NO) e
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Iterative deepening search /=1

Limit = 1 >@ @ (@) ./.\.
>(5) © 20,
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Iterative deepening search | =2

Limit =2 >@ @ Q. (4)
o o
»(D) () >(E)
(A (D) (4)
) /'<->\
>(F) O, >(6)
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Iterative deepening search [ =3
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Properties of iterative deepening search

Complete??
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Properties of iterative deepening search

Complete?? Yes

Time??

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 2 78



Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)b" 4+ db' + (d — )U* + ... + b" = O(b")

Space??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)b" 4+ db' + (d — )U* + ... + b" = O(b")
Space?? O(bd)

Optimal??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)0° +db' + (d — 1)b* + ... + b" = O(b")
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree
Comparison for b = 10 and d = 5, solution at far right leaf

N(IDS) = 50 + 400 + 3,000 + 20, 000 + 100, 000 = 123, 450
N(BFS) = 10 + 100 + 1,000 + 10, 000 + 100, 000 4 999, 990 = 11, 111, 100

IDS is asymptotically the same as BFS

IDS does better because other nodes at depth d are not expanded
BFS can be modified to apply goal test when a node is generated
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Bidirection search:

|dea: run two simultaneous searches — hoping that two searches meet
in the middle

— one forward from the initial state

— another backward from the goal

2072 is much less than °

Implementation: check to see whether the frontiers of the two
searches intersect:
— if they do, a solution has been found

The first solution found may not be optimal; some additional search
is required to make there is not another short-cut across the gap

Both-ends-against-the-middle (BEATM) endeavors to combine the
best features of top-down and bottom-up designs into one process
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Summary of algorithms#

Criterion | Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited  Deepening
Complete? | Yes* Yes* No Yes, ifl > d Yes
Time prtl  plcel bl b
Space pitl Bl pm bl bd
Optimal? Yes* Yes No No Yes*

Can a more efficient search algorithm replace exhaustive search??

— Essentially, the P vs. NP question
— Extremely, improvements (say heuristic)
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Graph search: repeated states*

Graph = Tree

Failure to detect repeated states can turn a linear problem into an
exponential one

A

d + 1 states space = 27 paths

All the tree-search versions of algorithms can be extended to the
graph-search versions by checking the repeated states
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Graph search®

def GRAPH-SEARCH( problem)

initialize the frontier using the initial state of problem

initialize the reached set to empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return node
add node to the reached set
expand the chosen node and add the resulting nodes to the frontier

only if not in the frontier or reached set

Note: using reached set to avoid exploring redundant paths
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Heuristic Search

Informed (heuristic) strategies use problem-specific knowledge
to find solutions more efficiently

Best-first search: use an evaluation function for each node
— f. estimate of “desirability”

= Expand the most desirable unexpanded node

Implementation
(QUEUEINGFEN = insert successors in decreasing order of desirability

Basic heuristics
o Greedy (best-first) search
e A” search
e Recursive best-first search
e Beam search
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Romania with step costs in km

[] Vaslui

Timisoara

Pitesti

98

] Hirsova

86

7] Mehadia Urziceni

7
5 Bucharest

Dobreta []

L Craiova Eforie
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Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

87

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374



Greedy search

Evaluation function /(n) (heuristic)
—= estimate of cost from 7 to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

AT Slides 10e(©Lin Zuoquan@QPKU 1998-2025 2 88



Greedy search example

366
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Greedy search example

253 329 374
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Greedy search example

366 176
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Greedy search example
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Properties of greedy search

Complete??
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Properties of greedy search

Complete?? No — can get stuck in loops, e.g., with Oradea as goal
lasi — Neamt — lasi — Neamt —  (hgip(n))
Complete in finite space with repeated-state checking

Time?7?
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Properties of greedy search

Complete?? No—can get stuck in loops
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b"), but a good heuristic can give dramatic improvement

Space??
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Properties of greedy search

Complete?? No—can get stuck in loops
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b"), but a good heuristic can give dramatic improvement
Space?? O(b")—keeps all nodes in memory

Optimal??
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Properties of greedy search

Complete?? No—can get stuck in loops
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b"), but a good heuristic can give dramatic improvement
Space?? O(b")—keeps all nodes in memory

Optimal?? No
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A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through 7 to goal

Algorithm: identical to Uniform-Cost-Search except for using g + h
instead of ¢

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n
(Also require h(n) > 0, so h(G) = 0 for any goal ()

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal
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A* search example
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A* search example

393=140+253 447=118+329 449=75+374
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A* search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193
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A* search example

< Arad
<_Sbu_> Climisoar Czerind >

447=118+329 449=75+374

Arad > >(Fagaras> Oradea > micuViced

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > (_Sbiu_>

526=366+160 417=317+100 553=300+253
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A* search example

< Arad
<_Sbu_> Climisoar) Czerind >

447=118+329 449=75+374

Chrad > (Fagarasd COradea > @mias Viced

646=280+366 671=291+380

C_Sibu > ucharesd  CCraiova S Pitesti > C_Siu_3

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
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A* search example

< Arad
<_Sbu_> Climisoar Czerind >

447=118+329 449=75+374

CArad > (Fagaras> COradea > Emnion Viced>

646=280+366 671=291+380

C_Sibiu > ucharesD

591=338+253 450=450+0

526=366+160

418=418+0 615=455+160 607=414+193
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Optimality of A*

Suppose some suboptimal goal (5 has been generated and is in the
queue. Let n be an unexpanded node on the shortest path to an

optimal goal (&

Start

n
[eX0) G,

o) since h(Gy) =0
(G) since (&5 is suboptimal

P
32
||
=%
Q3

9
f(n) since / is admissible

AVARRY,

Since f(G5) > f(n), A* will never select (&, for expansion
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Optimality of A*

Lemma: A* expands nodes in order of increasing | value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour 7 has all nodes with /' = f;, where f; < [y
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Heuristic consistency

A heuristic is consistent (monotonic) if

h(n) < c¢(n,a,n’) + h(n')

If /» is consistent, we have

F(r) = gn') + h(n!
= g(n)+c(n,a,n’) + h(n')
> g(n) + h(n)
= f(n)

l.e., f(n) is nondecreasing along any path (proof of the lemma)
Note
— the consistency is stronger than the admissibility
— the graph-search version of A* is optimal if /(7) is consistent
— the inconsistent heuristics can be effective by enhancemence
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Properties of A*

Complete??
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [ <
f(G)

Time??
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [ <
f(G)

Time?? Exponential in [relative error in /i X length of soln.]
— absolute error: A = h* — h, relative error: ¢ = (h* — h)/h*
— exponential in the maximum absolute error, O(b*)
— for constant step costs, O(b°), or O((0°)?) w.r.t. h*
(Polynomial in various variants of the heuristics)

Space??
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [ <

f(G)

Time?? Exponential in [relative error in /i X length of soln.]
(Polynomial in various variants of the heuristics)

Space?? Keeps all nodes in memory

— usually running out of space long before running out of time

— overcome space problem without sacrificing optimality or com-
pleteness, at a small cost in execution time

Optimal??
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [ <

f(G)

Time?? Exponential in [relative error in /i X length of soln.]
(Polynomial in various variants of the heuristics)

Space?? Keeps all nodes in memory

Optimal?? Yes — cannot expand [, | until f; is finished
— optimally efficient

(C* is the cost of the optimal solution path)

A* expands all nodes with f(n) < C*

A* expands some nodes with f(n) = C"

A* expands no nodes with f(n) > C*

prune — eliminating possibilities without having to examine
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A* variants*

Problem: A* expands a lot of nodes

— taking more time and space

— memory: stored in frontier (what to expand next) and in
reached states (what have visited); usually the size of frontier is
much smaller than reached

Satisficing search: willing to accept solutions that are suboptimal,
but are “good enough” (exploring fewer nodes); usually incomplete

e Weighted A*: f(n) = g(n)+ W x h(n), W > 1

- W =1: A5, W =0: UCS; W = oco: Greedy

— fewer states explored than A*

— bounded suboptimal search: within a constant factor I/ of
optimal cost
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A* variants*

e lterative-deepening A* (IDA*): similar iterative-deepening search
to depth-first
— without the requirement to keep all reached states in memory
— a cost of visiting some states multiple times

e Memory-bounded A* (MA*) and simplified MA* (SMA*)
— proceed just like A*, expanding the best leaf until memory is full

e Anytime A* (ATA*, time-bounded A*)

— can return a solution even if it is interrupted before it ends (so-
called anytime algorithm)

— different than A*, the evaluation function of ATA* might be
stopped and then restarted at any time

e Recursive best-first search (RBFS), see below

e Beam search, see below

AT Slides 10e©Lin Zuoquan@QPKU 1998-2025 2 114



Recursive best-first search

RBFS: recursive algorithm

— best-first search, but using only linear space

— similar to recursive-DLS, but

— — using the f-limat variable to keep track of the f-value of the
best alternative path available from any ancestor of the current node

Complete?? Yes, like to A*

Time?? Exponential, depending both on the accuracy of / and on
how often the best path changes as nodes are expanded

Space?? linear in the depth of the deepest optimal solution

Optimal?? Yes, like to A* (if i(n) is admissible)
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Recursive best-first algorithm?

def RECURSIVE-BEST-FIRST-SEARCH( problem)
solution, f-value <— RBFS(problem,NOTE(problem.INITIAL),00)
return solution

def RBFS(problem, node, f-limit)

if problem.Is-GOAL(node.STATE) then return node

successors <— LIST(EXPAND(node))

if successors is empty then return failure, oo

for each s in successors do // update fwith value from previous search
s.f<—max(s.PATH-COST + h(s), node.f)

while true do
best < the lowest f-value node in successors
if best.f > f-limit then return failure, best.f
alternative <— the second-lowest f-value among successors
result, best.f<— RBFS(problem, best, min(f-limit, alternative))
if resultfailure then return result,best.f
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Beam search”

|dea: keep F states instead of 1; choose top £ of all their successors
— keeping the & nodes with the best f-scores
— limiting the size of the frontier, saving memory
— incomplete and suboptimal

Not the same as /& searches run in parallel
Searches that find good states recruit other searches to join them
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Admissible heuristics

E.g., for the 8-puzzle

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State
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Admissible heuristics

E.g., for the 8-puzzle

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

hi(S) =77 6
ho(S) =7744+0+34+3+14+0+2+1=14

New kind of distance??
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Dominance”

If ho(n) > hyi(n) for all n (both admissible)
then /1, dominates /1; and is better for search

Typical search costs

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =24 IDS ~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics 7, 5y,
h(n) = max(hy(n), hy(n))

is also admissible and dominates /., h;
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Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move any-
where, then /(1) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then /5(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem
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Example: n-queens

Put n queens on an n x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce the number of conflicts

-

h=5 h=0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1 million

Ref: Pearl, J (1984), Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison- Wesley
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